Math Circles - Pigeonhole Principle - Fall 2022

Exercises

- 1. Suppose that S is a set of n + 1 integers. Prove that S contains distinct integers a and b such that b a is a multiple of n.
- 2. Let S be a set of 10 distinct integers between 1 and 60, inclusive. Prove that we can choose two disjoint¹ subsets of S (say, S_1 and S_2) such that the sum of the elements in S_1 is equal to the sum of the elements in S_2 .
- 3. Show that in any set of 100 integers, one can choose 15 of them such that the difference between any two is divisible by 7.
- 4. Prove that in any set of 100 integers, one can choose a set of at least one number whose sum is divisible by 100.
- 5. Suppose that the numbers $0, 1, 2, \ldots, 9$ are randomly assigned to the vertices of a decagon.² Show that there are three consecutive vertices whose sum is at least 14.
- 6. Let S be a set of 3 distinct integers. Show that one can always choose two of them (say, a and b) such that ab(a b)(a + b) is divisible by 10.
- 7. (HARD)

Show that any positive integer x containing N digits, none of which are 0, is either divisible by N or can be converted into an integer that is divisible by N by replacing some, but not all, of its digits with 0.

¹Disjoint means that the sets have no elements in common; that is, if x is in S_1 then x is not in S_2 .

²A *decagon* is a polygon with 10 vertices.