Math Circles - Pigeonhole Principle - Fall 2022

Exercises

1. Suppose that S is a set of $n+1$ integers. Prove that S contains distinct integers a and b such that $b-a$ is a multiple of n.
2. Let S be a set of 10 distinct integers between 1 and 60 , inclusive. Prove that we can choose two disjoint ${ }^{11}$ subsets of S (say, S_{1} and S_{2}) such that the sum of the elements in S_{1} is equal to the sum of the elements in S_{2}.
3. Show that in any set of 100 integers, one can choose 15 of them such that the difference between any two is divisible by 7 .
4. Prove that in any set of 100 integers, one can choose a set of at least one number whose sum is divisible by 100 .
5. Suppose that the numbers $0,1,2, \ldots, 9$ are randomly assigned to the vertices of a decagon 2^{2} Show that there are three consecutive vertices whose sum is at least 14 .
6. Let S be a set of 3 distinct integers. Show that one can always choose two of them (say, a and $b)$ such that $a b(a-b)(a+b)$ is divisible by 10 .
7. (HARD)

Show that any positive integer x containing N digits, none of which are 0 , is either divisible by N or can be converted into an integer that is divisible by N by replacing some, but not all, of its digits with 0 .

[^0]
[^0]: ${ }^{1}$ Disjoint means that the sets have no elements in common; that is, if x is in S_{1} then x is not in S_{2}.
 ${ }^{2} \mathrm{~A}$ decagon is a polygon with 10 vertices.

